№ 116ГДЗ ответы к учебнику Алгебра 8 класс, Мерзляк, Полонский, Якир

№ 116ГДЗ ответы к учебнику Алгебра 8 класс, Мерзляк, Полонский, Якир

Ответы к странице 116

461. В саду растет более 80, но менее 100 деревьев. Каждое третье дерево − яблоня, а каждое восьмое − груша. Сколько деревьев растет в саду?

Решение:

Общее количество деревьев кратно числу 24 (3 * 8), так как каждое третье дерево − яблоня, а каждое восьмое − груша.
Так как деревьев более 80 и менее 100, то среди данных чисел есть только одно число кратное 24, это число 96 = 24 * 4.
Ответ: 96 деревьев

462. Известно, что $frac{a}{b} = 3$. Найдите значение выражения $frac{2a — 3b}{a}$.

Решение:

$frac{2a — 3b}{a} = frac{2a}{a} — frac{3b}{a} = 2 — 3 * frac{b}{a} = 2 — 3 * frac{1}{3} = 2 — 1 = 1$
Ответ: 1

463. Сравните:
1) 2,4578 и 2,4569;
2) −1,9806 и −1,981.

Решение:

1) 2,4578 > 2,4569

2) −1,9806 > −1,981

464. Прочитайте периодическую дробь и назовите ее период:
1) 0,(5);
2) 1,(32);
3) 8,4(65);
4) 3,424242… .

Решение:

1) 0,(5) − ноль целых пять в периоде
5 − период дроби

2) 1,(32) − одна целая тридцать два в периоде
32 − период дроби

3) 8,4(65) − восемь целых четыре десятых и шестьдесят пять в периоде
65 − период дроби

4) 3,424242… = 3,(42) − три целых сорок два в периоде
42 − период дроби

465. Преобразуйте в десятичную дробь:
1) $frac{4}{5}$;
2) $frac{3}{8}$;
3) $frac{7}{16}$;
4) $frac{97}{80}$;
5) $frac{42}{15}$.

Решение:

1) $frac{4}{5} = frac{4 * 2}{5 * 2} = frac{8}{10} = 0,8$

2) $frac{3}{8}= frac{3 * 125}{8 * 125} = frac{375}{1000} = 0,375$

3) $frac{7}{16} = frac{7 * 625}{16 * 625} = frac{4375}{10000} = 0,4375$

4) $frac{97}{80} = 1frac{17}{80} = 1 + frac{17 * 125}{80 * 125} = 1 + frac{2125}{10000} = 1 + 0,2125 = 1,2125$

5) $frac{42}{15} = 2frac{12}{15} = 2frac{4}{5} = 2 + frac{4 * 2}{5 * 2} = 2 + frac{8}{10} = 2 + 0,8 = 2,8$

466. Преобразуйте обыкновенную дробь в бесконечную периодическую десятичную дробь и определите ее период:
1) $frac{5}{6}$;
2) $frac{11}{15}$;
3) $frac{9}{11}$;
4) $frac{31}{33}$.

Решение:

1) $frac{5}{6} = 5 : 6 = 0,8333… = 0,8(3)$
3 − период дроби

2) $frac{11}{15} = 11 : 15 = 0,7333… = 0,7(3)$
3 − период дроби

3) $frac{9}{11} = 9 : 11 = 0,8181… = 0,(81)$
81 − период дроби

4) $frac{31}{33} = 31 : 33 = 0,9393… = 0,(93)$
93 − период дроби

№467. Попарно различные числа a, b, с удовлетворяют условию a2(b + c) = b2(c + a). Докажите, что a2(b + c) = c2(a + b).

Решение:

$a^2(b + c) = b^2(c + a)$
$a^2(b + c) — b^2(c + a) = 0$
$a^2b + a^2c — b^2c — b^2a = 0$
$(a^2c — b^2c) + (a^2b — b^2a) = 0$
$c(a^2 — b^2) + ab(a — b) = 0$
c(a − b)(a + b) + ab(a − b) = 0
(a − b)(c(a + b) + ab) = 0
(a − b)(cа + сb + ab) = 0

$a^2(b + c) = c^2(a + b)$
$a^2(b + c) — c^2(a + b) = 0$
$a^2b + a^2c — ac^2 — bc^2 = 0$
$(a^2b — bc^2) + (a^2c — ac^2) = 0$
$b(a^2 — c^2) + ac(a — c) = 0$
$b(a — c)(a + c) + ac(a — c) = 0$
(a − c)(b(a + c) + ac) = 0
(a − c)(bа + bc + ac) = 0

Поскольку a, b, с попарно различные, a − b ≠ 0, и a − c ≠ 0 значит
cа + сb + ab = 0  и
bа + bc + ac = 0

cа + сb + ab = bа + bc + ac
Утверждение доказано.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *