Ответы к странице 251-252
Задание № 1048
Среднее арифметическое семи чисел равно 10,2, а среднее арифметическое трех других чисел − 6,8. Найдите среднее арифметическое этих десяти чисел.
Решение задачи
1) 10,2 * 7 = 71,4 — сумма семи чисел.
2) 6,8 * 3 = 20,4 — сумма трех чисел.
3) 71,4 + 20,4 = 91,8 — сумма всех десяти чисел.
4) 91,8 : 10 = 9,18 — среднее арифметическое этих десяти чисел.
Ответ: 9,18.
Задание № 1049
Средний возраст одиннадцати футболистов команды равен 22 годам. Во время игры одного из футболистов удалили с поля, после чего средний возраст оставшихся игроков составил 21 год. Сколько лет было футболисту, который покинул поле?
Решение задачи
1) 11 * 22 = 242 (г.) — суммарный возраст одиннадцати футболистов.
2) 11 − 1 = 10 (иг.) — осталось на поле.
3) 10 * 21 = 210 (лет) — суммарный возраст десяти футболистов.
4) 242 − 210 = 32 (г.) — было футболисту, который покинул поле.
Ответ: 32 года.
Задание № 1050
На сколько среднее арифметическое всех четных чисел от 1 до 1000 включительно больше, чем среднее арифметическое всех нечетных чисел от 1 до 1000 включительно?
Решение
Всего чисел от 1 до 1000 равно 1000, из них:
500 − четных чисел;
500 − нечетных чисел.
Разобьем четные числа попарно:
2 и 1000; 4 и 998 и т.д.
Найдем среднее арифметическое пары:
(2 + 1000) : 2 = 1002 : 2 = 501;
(4 + 998) : 2 = 1002 : 2 = 501.
Так сумма каждой пары четных чисел равна 1002, то и среднее арифметическое каждой пары чисел будет равно 501, следовательно среднее арифметическое всех четных чисел равно 501.
Разобьем нечетные числа попарно:
1 и 999; 3 и 997 и т.д.
Найдем среднее арифметическое пары:
(1 + 999) : 2 = 1000 : 2 = 500;
(3 + 997) : 2 = 1000 : 2 = 500.
Так сумма каждой пары нечетных чисел равна 1000, то и среднее арифметическое каждой пары чисел будет равно 500, следовательно среднее арифметическое всех нечетных чисел равно 500.
501 − 500 = 1, значит среднее арифметическое всех четных чисел от 1 до 1000 включительно на 1 больше, чем среднее арифметическое всех нечетных чисел от 1 до 1000 включительно.
Ответ: на 1.
Задание № 1051
Семь гномов собрались вечером вокруг костра. Оказалось, что рост каждого гнома равен среднему арифметическому роста двух его соседей. Докажите, что все гномы были одного роста.
Решение
Допустим, что не все гномы были одного роста. Тогда самый высокий гном не может быть выше ни одного из двух своих соседей, так как тогда его рост не будет равен среднему арифметическому двух его соседей. Следовательно все гномы были одного роста.
Задание № 1052
Найдите числа, которых не хватает в цепочке вычислений:
1) 9,88 : a = 3,8
a = 9,88 : 3,8
a = 2,6;
3,8 − b = 1,74
b = 3,8 − 1,74
b = 2,06;
1,74 * c = 6,09
c = 6,09 : 1,74
c = 3,5.
Ответ: a = 2,6; b = 2,06; c = 3,5.2) 6,2 * x = 17,36
x = 17,36 : 6,2
x = 2,8;
17,36 + y = 20,1
y = 20,1 − 17,36
y = 2,74;
20,1 : z = 1,5
z = 20,1 : 1,5
z = 13,4.
Ответ: x = 2,8; y = 2,74; z = 13,4.
Задание № 1053
1) Периметр прямоугольника равен 36,8 см, а одна из его сторон − 13,8 см. Вычислите площадь прямоугольника.
Решение
1) 36,8 : 2 = 18,4 (см) — сумма длин двух соседних сторон прямоугольника.
2) 18,4 − 13,8 = 4,6 (см) — длина второй стороны прямоугольника.
3) 13,8 * 4,6 = 63,48 (см2) — площадь прямоугольника.
Ответ: 63,48 см2.
2) Ширина прямоугольного параллелепипеда равна 7,2 см, что составляет 0,8 его длины и 0,18 его высоты. Вычислите объем параллелепипеда.
Решение
1) 7,2 : 0,8 = 9 (см) — длина прямоугольного параллелепипеда.
2) 7,2 : 0,18 = 40 (см) — высота параллелепипеда.
3) 7,2 * 9 * 40 = 7,2 * 360 = 2592 (см3) — объем параллелепипеда.
Ответ: 2592 см3.
Задание № 1054
В 25 банок разлили поровну 32 кг меда. Сколько меда налили в каждую банку? Ответ округлите до десятых.
Решение
32 : 25 = 1,28 ≈ 1,3 кг меда разлили в каждую банку.
_32 |25
25 |1,28
_70
50
_200
200
0
Ответ: ≈ 1,3 кг.
Задание № 1055
Одновременно на сковороду можно положить двух карасей. Чтобы поджарить одного карася с одной стороны, нужна 1 мин. Можно ли за 3 мин поджарить с двух сторон трех карасей?
Решение
Действие 1:
Положим на сковороду двух карасей и зажарим им за одну минуту одну сторону.
Действие 2:
Убираем одного карася со сковороды, а второго переворачиваем и кладем на сковороду третьего карася, жарим еще одну минуту.
Действие 3:
Убираем со сковороды обжаренного с двух сторон карася, переворачиваем третьего карася и положим на сковороду убранного после первого действия карася, жарим еще одну минут.
После этого получается, что за три минуты у нас все три карася обжарены с двух сторон.
Ответ: можно.