№ 52ГДЗ ответы к учебнику по математике 4 класс часть 1 Чекин

№ 52ГДЗ ответы к учебнику по математике 4 класс часть 1 Чекин

Ответы к стр. 52

149. После того как мама положила на каждую из четырёх тарелок по 3 сосиски, в кастрюле осталось 2 сосиски. Сколько всего сосисок сварила мама?
Запиши решение этой задачи в виде одного выражения. Раздели с остатком число 14 на число 4.

3 • 4 + 2 = 14 (с.)
14 : 4 = 3 (ост. 2)

150. Выполни деление с остатком, используя для этого соответствующие табличные случаи деления.
24 : 6 =    27 : 3 =    32 : 8 =    81 : 9 =
27 : 6 =    29 : 3 =    39 : 8 =    85 : 9 =
Рассмотри действия деления в первом столбике. Какое из них является табличным случаем деления? На сколько одно делимое отличается от другого? Будет ли это число совпадать с остатком?
Вычисли, на сколько отличаются делимые в остальных столбиках. Проверь, совпадает ли каждое из этих чисел с соответствующим ему остатком.

24 : 6 = 4                27 : 3 = 9
27 : 6 = 4 (ост. 3)   29 : 3 = 9 (ост. 2)

32 : 8 = 4                81 : 9 = 9
39 : 8 = 4 (ост. 7)   85 : 9 = 9 (ост. 4)

Табличный случай деления 24 : 6 = 4, так как 6 • 4 = 24.
Разностное сравнение чисел: 27 – 24 = 3, 27 > 24 на 3. Да, так как остаток – это минимальное число, которое нужно вычесть из делимого, чтобы полученное число делилось нацело на данный делитель. То есть, если, из делимого 27 вычесть делимое 24, которое делится на 6 нацело, то получим число 3, которое и является остатком.
29 – 27 = 2 39 – 32 = 7 85 – 81 = 4
29 : 3 = 9 (ост. 2) 39 : 8 = 4 (ост. 7) 85 : 9 = 9 (ост. 4)
Каждое число, получившееся в результате разностного сравнения делимых, совпадает с соответствующим ему остатком.

151. Объясни, почему с помощью табличного случая деления 42 : 7 = 6 можно разделить с остатком число 45 на число 7. Выполни и запиши деление с остатком числа 45 на число 7.
Почему выбранный табличный случай деления можно получить, выполнив действие в скобках в следующем выражении: (45 — 3) : 7?
Вычисли значение этого выражения. В полученном равенстве подчеркни соответственно одной и двумя чертами числа, которые получаются в результате деления с остатком числа 45 на число 7. Всегда ли аналогичным образом можно получить по результатам деления с остатком соответствующий случай деления нацело?

Наибольшее число, которое делится нацело на 7 и которое не превосходит число 45, — это число 42 (42 : 7 = 6). Можно утверждать, что делитель (число 7) максимально содержится в делимом (числе 45) 6 раз, при этом в остатке остаётся ещё число 3 (45 – 42 = 3), значит 45 : 7 = 6 (ост. 3).
Потому, что число 3 — это остаток, при вычитании которого из делимого мы получаем указанный табличный случай деления.
(45 — 3) : 7 = 42 : 7 = 6.
По результатам деления с остатком 45 : 7 = 6 (ост. 3) всегда можно получить соответствующий случай деления нацело. Например, при вычитании остатка (3) из делимого (45) получается число (42), которое делится нацело на делитель (7).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *