№ 99ГДЗ ответы к учебнику Алгебра 8 класс, Мерзляк, Полонский, Якир

№ 99ГДЗ ответы к учебнику Алгебра 8 класс, Мерзляк, Полонский, Якир

Ответы к странице 99

§12. Квадратные корни. Арифметический квадратный корень

Вопросы

1. Что называют квадратным корнем из числа a?

Ответ:

Квадратным корнем из числа a называют число, квадрат которого равен a.

2. Что называют арифметическим квадратным корнем из числа a?

Ответ:

Арифметическим квадратным корнем из числа a называют неотрицательное число, квадрат которого равен a.

3. Как обозначают арифметический квадратный корень из числа a?

Ответ:

Арифметический квадратный корень из числа a обозначают $sqrt{a}$.

4. Как называют знак $sqrt{}$?

Ответ:

Знак $sqrt{}$ называют знаком квадратного корня или радикалом (от лат. radix — «корень»).

5. Как читают запись $sqrt{a}$?

Ответ:

Запись $sqrt{a}$ читают: «квадратный корень из a», опуская при чтении слово «арифметический».

6. Как называют выражение, стоящее под радикалом?

Ответ:

Выражение, стоящее под радикалом, называют подкоренным выражением.

7. Какие значения может принимать подкоренное выражение?

Ответ:

Из определения арифметического квадратного корня следует, что подкоренное выражение может принимать только неотрицательные значения.

8. Как называют действие нахождения арифметического квадратного корня из числа?

Ответ:

Действие нахождения арифметического квадратного корня из числа называют извлечением квадратного корня.

9. Чему равно значение выражения $(sqrt{a})^2$ для любого неотрицательного числа a?

Ответ:

Для любого неотрицательного числа a справедливо, что $sqrt{a} ≥ 0$ и $(sqrt{a})^2 = a$.

10. Сколько корней имеет уравнение $x^2 = a$ при a > 0? Чему они равны?

Ответ:

При a > 0, уравнение $x^2 = a$ имеет два корня: $sqrt{a}$ и $-sqrt{a}$.

11. Имеет ли корни уравнение $x^2 = a$ при a = 0; при a < 0?

Ответ:

При a = 0 уравнение $x^2 = a$ имеет единственный корень x = 0.
При a < 0 уравнение $x^2 = a$ не имеет корней.

Упражнения

377. Чему равен квадратный корень из числа 16; из числа 1; из числа 0? Чему равен арифметический квадратный корень из этих чисел?

Решение:

Квадратный корень из числа 16 равен 4 и −4.
$4^2 = 16$
$(-4)^2 = 16$
Арифметический квадратный корень из числа 16 равен 4.
$sqrt{16} = sqrt{4^2} = 4$

Квадратный корень из числа 1 равен 1 и −1.
$1^2 = 1$
$(-1)^2 = 1$
Арифметический квадратный корень из числа 1 равен 1.
$sqrt{1} = sqrt{1^2} = 1$

Квадратный корень из числа 0 равен 0.
$0^2 = 0$
Арифметический квадратный корень из числа 0 равен 0.
$sqrt{0} = sqrt{0^2} = 0$

378. Верно ли равенство (ответ обоснуйте):
1) $sqrt{25} = 5$;
2) $sqrt{0} = 0$;
3) $sqrt{36} = -6$;
4) $sqrt{0,4} = 0,2$;
5) $sqrt{0,81} = 0,9$;
6) $sqrt{10} = 100$?

Решение:

1) $sqrt{25} = 5$
равенство верно, так как $5^2 = 25$ и 5 равенство верно, так как $5^2 = 25$ и 5 ≥ 0 0

2) $sqrt{0} = 0$
равенство верно, так как $0^2 = 0$ и 0 ≥ 0

3) $sqrt{36} = -6$
равенство неверно, так как −6 < 04) $sqrt{0,4} = 0,2$
равенство неверно, так как $0,2^2 = 0,04 ≠ 0,4$

5) $sqrt{0,81} = 0,9$
равенство верно, так как $0,9^2 = 0,81$ и 0,9 ≥ 0

6) $sqrt{10} = 100$
равенство неверно, так как $100^2 = 10000 ≠ 10$

379. Найдите значение арифметического квадратного корня:
1) $sqrt{9}$;
2) $sqrt{49}$;
3) $sqrt{100}$;
4) $sqrt{225}$;
5) $sqrt{0,25}$;
6) $sqrt{0,01}$;
7) $sqrt{1,21}$;
8) $sqrt{1,96}$;
9) $sqrt{400}$;
10) $sqrt{3600}$;
11) $sqrt{frac{1}{64}}$;
12) $sqrt{frac{4}{9}}$;
13) $sqrt{1frac{9}{16}}$;
14) $sqrt{3frac{6}{25}}$;
15) $sqrt{0,0004}$;
16) $sqrt{0,000025}$.

Решение:

1) $sqrt{9} = sqrt{3^2} = 3$

2) $sqrt{49} = sqrt{7^2} = 7$

3) $sqrt{100} = sqrt{10^2} = 10$

4) $sqrt{225} = sqrt{15^2} = 15$

5) $sqrt{0,25} = sqrt{0,5^2} = 0,5$

6) $sqrt{0,01} = sqrt{0,1^2} = 0,1$

7) $sqrt{1,21} = sqrt{1,1^2} = 1,1$

8) $sqrt{1,96} = sqrt{1,4^2} = 1,4$

9) $sqrt{400} = sqrt{20^2} = 20$

10) $sqrt{3600} = sqrt{60^2} = 60$

11) $sqrt{frac{1}{64}} = sqrt{(frac{1}{8})^2} = frac{1}{8}$

12) $sqrt{frac{4}{9}} = sqrt{(frac{2}{3})^2} = frac{2}{3}$

13) $sqrt{1frac{9}{16}} = sqrt{frac{25}{16}} = sqrt{(frac{5}{4})^2} = frac{5}{4} = 1frac{1}{4}$

14) $sqrt{3frac{6}{25}} = sqrt{frac{81}{25}} = sqrt{(frac{9}{5})^2} = frac{9}{5} = 1frac{4}{5}$

15) $sqrt{0,0004} = sqrt{(0,02)^2} = 0,02$

16) $sqrt{0,000025} = sqrt{0,005^2} = 0,005$

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *